Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The field of spintronics has seen a surge of interest in altermagnetism due to novel predictions and many possible applications. MnTe is a leading altermagnetic candidate that is of significant interest across spintronics due to its layered antiferromagnetic structure, high Neel temperature (TN ≈ 310 K) and semiconducting properties. The results on molecular beam epitaxy (MBE) grown MnTe/InP(111) films are presented. Here, it is found that the electronic and magnetic properties are driven by the natural stoichiometry of MnTe. Electronic transport and in situ angle‐resolved photoemission spectroscopy show the films are natively metallic with the Fermi level in the valence band and the band structure is in good agreement with first‐principles calculations for altermagnetic spin‐splitting. Neutron diffraction confirms that the film is antiferromagnetic with planar anisotropy and polarized neutron reflectometry indicates weak ferromagnetism, which is linked to a slight Mn‐richness that is intrinsic to the MBE‐grown samples. When combined with the anomalous Hall effect, this work shows that the electronic response is strongly affected by the ferromagnetic moment. Altogether, this highlights potential mechanisms for controlling altermagnetic ordering for diverse spintronic applications.more » « less
-
Abstract Cobalt oxides have long been understood to display intriguing phenomena known as spin-state crossovers, where the cobalt ion spin changes vs. temperature, pressure, etc. A very different situation was recently uncovered in praseodymium-containing cobalt oxides, where a first-order coupled spin-state/structural/metal-insulator transition occurs, driven by a remarkable praseodymium valence transition. Such valence transitions, particularly when triggering spin-state and metal-insulator transitions, offer highly appealing functionality, but have thus far been confined to cryogenic temperatures in bulk materials (e.g., 90 K in Pr1-xCaxCoO3). Here, we show that in thin films of the complex perovskite (Pr1-yYy)1-xCaxCoO3-δ, heteroepitaxial strain tuning enables stabilization of valence-driven spin-state/structural/metal-insulator transitions to at least 291 K, i.e., around room temperature. The technological implications of this result are accompanied by fundamental prospects, as complete strain control of the electronic ground state is demonstrated, from ferromagnetic metal under tension to nonmagnetic insulator under compression, thereby exposing a potential novel quantum critical point.more » « less
An official website of the United States government
